3.4.37 \(\int \frac {1}{(a+a \cos (c+d x))^3 \sec ^{\frac {7}{2}}(c+d x)} \, dx\) [337]

3.4.37.1 Optimal result
3.4.37.2 Mathematica [C] (verified)
3.4.37.3 Rubi [A] (verified)
3.4.37.4 Maple [A] (verified)
3.4.37.5 Fricas [C] (verification not implemented)
3.4.37.6 Sympy [F(-1)]
3.4.37.7 Maxima [F]
3.4.37.8 Giac [F]
3.4.37.9 Mupad [F(-1)]

3.4.37.1 Optimal result

Integrand size = 23, antiderivative size = 195 \[ \int \frac {1}{(a+a \cos (c+d x))^3 \sec ^{\frac {7}{2}}(c+d x)} \, dx=\frac {49 \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{10 a^3 d}-\frac {13 \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{6 a^3 d}-\frac {\sqrt {\sec (c+d x)} \sin (c+d x)}{5 d (a+a \sec (c+d x))^3}-\frac {8 \sqrt {\sec (c+d x)} \sin (c+d x)}{15 a d (a+a \sec (c+d x))^2}-\frac {13 \sqrt {\sec (c+d x)} \sin (c+d x)}{6 d \left (a^3+a^3 \sec (c+d x)\right )} \]

output
-1/5*sin(d*x+c)*sec(d*x+c)^(1/2)/d/(a+a*sec(d*x+c))^3-8/15*sin(d*x+c)*sec( 
d*x+c)^(1/2)/a/d/(a+a*sec(d*x+c))^2-13/6*sin(d*x+c)*sec(d*x+c)^(1/2)/d/(a^ 
3+a^3*sec(d*x+c))+49/10*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*El 
lipticE(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/a^3/ 
d-13/6*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d 
*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/a^3/d
 
3.4.37.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 2.06 (sec) , antiderivative size = 378, normalized size of antiderivative = 1.94 \[ \int \frac {1}{(a+a \cos (c+d x))^3 \sec ^{\frac {7}{2}}(c+d x)} \, dx=\frac {2 \cos ^6\left (\frac {1}{2} (c+d x)\right ) \left (\frac {2 i \sqrt {2} e^{-i (c+d x)} \sqrt {\frac {e^{i (c+d x)}}{1+e^{2 i (c+d x)}}} \left (147 \left (1+e^{2 i (c+d x)}\right )+147 \left (-1+e^{2 i c}\right ) \sqrt {1+e^{2 i (c+d x)}} \operatorname {Hypergeometric2F1}\left (-\frac {1}{4},\frac {1}{2},\frac {3}{4},-e^{2 i (c+d x)}\right )+65 e^{i (c+d x)} \left (-1+e^{2 i c}\right ) \sqrt {1+e^{2 i (c+d x)}} \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {1}{2},\frac {5}{4},-e^{2 i (c+d x)}\right )\right )}{-1+e^{2 i c}}-\frac {1}{32} \left (1134 \cos \left (\frac {1}{2} (c-d x)\right )+1071 \cos \left (\frac {1}{2} (3 c+d x)\right )+923 \cos \left (\frac {1}{2} (c+3 d x)\right )+694 \cos \left (\frac {1}{2} (5 c+3 d x)\right )+470 \cos \left (\frac {1}{2} (3 c+5 d x)\right )+265 \cos \left (\frac {1}{2} (7 c+5 d x)\right )+117 \cos \left (\frac {1}{2} (5 c+7 d x)\right )+30 \cos \left (\frac {1}{2} (9 c+7 d x)\right )\right ) \csc \left (\frac {c}{2}\right ) \sec \left (\frac {c}{2}\right ) \sec ^5\left (\frac {1}{2} (c+d x)\right ) \sqrt {\sec (c+d x)}\right )}{15 a^3 d (1+\cos (c+d x))^3} \]

input
Integrate[1/((a + a*Cos[c + d*x])^3*Sec[c + d*x]^(7/2)),x]
 
output
(2*Cos[(c + d*x)/2]^6*(((2*I)*Sqrt[2]*Sqrt[E^(I*(c + d*x))/(1 + E^((2*I)*( 
c + d*x)))]*(147*(1 + E^((2*I)*(c + d*x))) + 147*(-1 + E^((2*I)*c))*Sqrt[1 
 + E^((2*I)*(c + d*x))]*Hypergeometric2F1[-1/4, 1/2, 3/4, -E^((2*I)*(c + d 
*x))] + 65*E^(I*(c + d*x))*(-1 + E^((2*I)*c))*Sqrt[1 + E^((2*I)*(c + d*x)) 
]*Hypergeometric2F1[1/4, 1/2, 5/4, -E^((2*I)*(c + d*x))]))/(E^(I*(c + d*x) 
)*(-1 + E^((2*I)*c))) - ((1134*Cos[(c - d*x)/2] + 1071*Cos[(3*c + d*x)/2] 
+ 923*Cos[(c + 3*d*x)/2] + 694*Cos[(5*c + 3*d*x)/2] + 470*Cos[(3*c + 5*d*x 
)/2] + 265*Cos[(7*c + 5*d*x)/2] + 117*Cos[(5*c + 7*d*x)/2] + 30*Cos[(9*c + 
 7*d*x)/2])*Csc[c/2]*Sec[c/2]*Sec[(c + d*x)/2]^5*Sqrt[Sec[c + d*x]])/32))/ 
(15*a^3*d*(1 + Cos[c + d*x])^3)
 
3.4.37.3 Rubi [A] (verified)

Time = 1.22 (sec) , antiderivative size = 210, normalized size of antiderivative = 1.08, number of steps used = 17, number of rules used = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.739, Rules used = {3042, 3717, 3042, 4304, 27, 3042, 4508, 3042, 4508, 27, 3042, 4274, 3042, 4258, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\sec ^{\frac {7}{2}}(c+d x) (a \cos (c+d x)+a)^3} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\csc \left (c+d x+\frac {\pi }{2}\right )^{7/2} \left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^3}dx\)

\(\Big \downarrow \) 3717

\(\displaystyle \int \frac {1}{\sqrt {\sec (c+d x)} (a \sec (c+d x)+a)^3}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^3}dx\)

\(\Big \downarrow \) 4304

\(\displaystyle -\frac {\int -\frac {11 a-5 a \sec (c+d x)}{2 \sqrt {\sec (c+d x)} (\sec (c+d x) a+a)^2}dx}{5 a^2}-\frac {\sin (c+d x) \sqrt {\sec (c+d x)}}{5 d (a \sec (c+d x)+a)^3}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {11 a-5 a \sec (c+d x)}{\sqrt {\sec (c+d x)} (\sec (c+d x) a+a)^2}dx}{10 a^2}-\frac {\sin (c+d x) \sqrt {\sec (c+d x)}}{5 d (a \sec (c+d x)+a)^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {11 a-5 a \csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \left (\csc \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^2}dx}{10 a^2}-\frac {\sin (c+d x) \sqrt {\sec (c+d x)}}{5 d (a \sec (c+d x)+a)^3}\)

\(\Big \downarrow \) 4508

\(\displaystyle \frac {\frac {\int \frac {41 a^2-24 a^2 \sec (c+d x)}{\sqrt {\sec (c+d x)} (\sec (c+d x) a+a)}dx}{3 a^2}-\frac {16 a \sin (c+d x) \sqrt {\sec (c+d x)}}{3 d (a \sec (c+d x)+a)^2}}{10 a^2}-\frac {\sin (c+d x) \sqrt {\sec (c+d x)}}{5 d (a \sec (c+d x)+a)^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\int \frac {41 a^2-24 a^2 \csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \left (\csc \left (c+d x+\frac {\pi }{2}\right ) a+a\right )}dx}{3 a^2}-\frac {16 a \sin (c+d x) \sqrt {\sec (c+d x)}}{3 d (a \sec (c+d x)+a)^2}}{10 a^2}-\frac {\sin (c+d x) \sqrt {\sec (c+d x)}}{5 d (a \sec (c+d x)+a)^3}\)

\(\Big \downarrow \) 4508

\(\displaystyle \frac {\frac {\frac {\int \frac {147 a^3-65 a^3 \sec (c+d x)}{2 \sqrt {\sec (c+d x)}}dx}{a^2}-\frac {65 a^2 \sin (c+d x) \sqrt {\sec (c+d x)}}{d (a \sec (c+d x)+a)}}{3 a^2}-\frac {16 a \sin (c+d x) \sqrt {\sec (c+d x)}}{3 d (a \sec (c+d x)+a)^2}}{10 a^2}-\frac {\sin (c+d x) \sqrt {\sec (c+d x)}}{5 d (a \sec (c+d x)+a)^3}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\frac {\int \frac {147 a^3-65 a^3 \sec (c+d x)}{\sqrt {\sec (c+d x)}}dx}{2 a^2}-\frac {65 a^2 \sin (c+d x) \sqrt {\sec (c+d x)}}{d (a \sec (c+d x)+a)}}{3 a^2}-\frac {16 a \sin (c+d x) \sqrt {\sec (c+d x)}}{3 d (a \sec (c+d x)+a)^2}}{10 a^2}-\frac {\sin (c+d x) \sqrt {\sec (c+d x)}}{5 d (a \sec (c+d x)+a)^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\frac {\int \frac {147 a^3-65 a^3 \csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{2 a^2}-\frac {65 a^2 \sin (c+d x) \sqrt {\sec (c+d x)}}{d (a \sec (c+d x)+a)}}{3 a^2}-\frac {16 a \sin (c+d x) \sqrt {\sec (c+d x)}}{3 d (a \sec (c+d x)+a)^2}}{10 a^2}-\frac {\sin (c+d x) \sqrt {\sec (c+d x)}}{5 d (a \sec (c+d x)+a)^3}\)

\(\Big \downarrow \) 4274

\(\displaystyle \frac {\frac {\frac {147 a^3 \int \frac {1}{\sqrt {\sec (c+d x)}}dx-65 a^3 \int \sqrt {\sec (c+d x)}dx}{2 a^2}-\frac {65 a^2 \sin (c+d x) \sqrt {\sec (c+d x)}}{d (a \sec (c+d x)+a)}}{3 a^2}-\frac {16 a \sin (c+d x) \sqrt {\sec (c+d x)}}{3 d (a \sec (c+d x)+a)^2}}{10 a^2}-\frac {\sin (c+d x) \sqrt {\sec (c+d x)}}{5 d (a \sec (c+d x)+a)^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\frac {147 a^3 \int \frac {1}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx-65 a^3 \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}dx}{2 a^2}-\frac {65 a^2 \sin (c+d x) \sqrt {\sec (c+d x)}}{d (a \sec (c+d x)+a)}}{3 a^2}-\frac {16 a \sin (c+d x) \sqrt {\sec (c+d x)}}{3 d (a \sec (c+d x)+a)^2}}{10 a^2}-\frac {\sin (c+d x) \sqrt {\sec (c+d x)}}{5 d (a \sec (c+d x)+a)^3}\)

\(\Big \downarrow \) 4258

\(\displaystyle \frac {\frac {\frac {147 a^3 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\cos (c+d x)}dx-65 a^3 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)}}dx}{2 a^2}-\frac {65 a^2 \sin (c+d x) \sqrt {\sec (c+d x)}}{d (a \sec (c+d x)+a)}}{3 a^2}-\frac {16 a \sin (c+d x) \sqrt {\sec (c+d x)}}{3 d (a \sec (c+d x)+a)^2}}{10 a^2}-\frac {\sin (c+d x) \sqrt {\sec (c+d x)}}{5 d (a \sec (c+d x)+a)^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\frac {147 a^3 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx-65 a^3 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{2 a^2}-\frac {65 a^2 \sin (c+d x) \sqrt {\sec (c+d x)}}{d (a \sec (c+d x)+a)}}{3 a^2}-\frac {16 a \sin (c+d x) \sqrt {\sec (c+d x)}}{3 d (a \sec (c+d x)+a)^2}}{10 a^2}-\frac {\sin (c+d x) \sqrt {\sec (c+d x)}}{5 d (a \sec (c+d x)+a)^3}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {\frac {\frac {\frac {294 a^3 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}-65 a^3 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{2 a^2}-\frac {65 a^2 \sin (c+d x) \sqrt {\sec (c+d x)}}{d (a \sec (c+d x)+a)}}{3 a^2}-\frac {16 a \sin (c+d x) \sqrt {\sec (c+d x)}}{3 d (a \sec (c+d x)+a)^2}}{10 a^2}-\frac {\sin (c+d x) \sqrt {\sec (c+d x)}}{5 d (a \sec (c+d x)+a)^3}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {\frac {\frac {\frac {294 a^3 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}-\frac {130 a^3 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}}{2 a^2}-\frac {65 a^2 \sin (c+d x) \sqrt {\sec (c+d x)}}{d (a \sec (c+d x)+a)}}{3 a^2}-\frac {16 a \sin (c+d x) \sqrt {\sec (c+d x)}}{3 d (a \sec (c+d x)+a)^2}}{10 a^2}-\frac {\sin (c+d x) \sqrt {\sec (c+d x)}}{5 d (a \sec (c+d x)+a)^3}\)

input
Int[1/((a + a*Cos[c + d*x])^3*Sec[c + d*x]^(7/2)),x]
 
output
-1/5*(Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(d*(a + a*Sec[c + d*x])^3) + ((-16* 
a*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(3*d*(a + a*Sec[c + d*x])^2) + (((294*a 
^3*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d - (1 
30*a^3*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d) 
/(2*a^2) - (65*a^2*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(d*(a + a*Sec[c + d*x] 
)))/(3*a^2))/(10*a^2)
 

3.4.37.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3717
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)]^(n_.))^(p_.), x_Symbol] :> Simp[d^(n*p)   Int[(d*Csc[e + f*x])^(m - n*p 
)*(b + a*Csc[e + f*x]^n)^p, x], x] /; FreeQ[{a, b, d, e, f, m, n, p}, x] && 
  !IntegerQ[m] && IntegersQ[n, p]
 

rule 4258
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x] 
)^n*Sin[c + d*x]^n   Int[1/Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && 
 EqQ[n^2, 1/4]
 

rule 4274
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + 
(a_)), x_Symbol] :> Simp[a   Int[(d*Csc[e + f*x])^n, x], x] + Simp[b/d   In 
t[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]
 

rule 4304
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_), x_Symbol] :> Simp[(-Cot[e + f*x])*(a + b*Csc[e + f*x])^m*((d*Csc 
[e + f*x])^n/(f*(2*m + 1))), x] + Simp[1/(a^2*(2*m + 1))   Int[(a + b*Csc[e 
 + f*x])^(m + 1)*(d*Csc[e + f*x])^n*(a*(2*m + n + 1) - b*(m + n + 1)*Csc[e 
+ f*x]), x], x] /; FreeQ[{a, b, d, e, f, n}, x] && EqQ[a^2 - b^2, 0] && LtQ 
[m, -1] && (IntegersQ[2*m, 2*n] || IntegerQ[m])
 

rule 4508
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[(-(A*b 
- a*B))*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(b*f*(2*m + 
 1))), x] - Simp[1/(a^2*(2*m + 1))   Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Cs 
c[e + f*x])^n*Simp[b*B*n - a*A*(2*m + n + 1) + (A*b - a*B)*(m + n + 1)*Csc[ 
e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] && NeQ[A*b - a*B 
, 0] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)] &&  !GtQ[n, 0]
 
3.4.37.4 Maple [A] (verified)

Time = 5.62 (sec) , antiderivative size = 270, normalized size of antiderivative = 1.38

method result size
default \(\frac {\sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (348 \left (\cos ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+130 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \left (\cos ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+294 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, \left (\cos ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-578 \left (\cos ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+264 \left (\cos ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-37 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+3\right )}{60 a^{3} \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{5} \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(270\)

input
int(1/(a+cos(d*x+c)*a)^3/sec(d*x+c)^(7/2),x,method=_RETURNVERBOSE)
 
output
1/60*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(348*cos(1/2* 
d*x+1/2*c)^8+130*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^ 
(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*cos(1/2*d*x+1/2*c)^5+294*(sin( 
1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*cos(1/2*d*x+1/2* 
c)^5*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-578*cos(1/2*d*x+1/2*c)^6+264*co 
s(1/2*d*x+1/2*c)^4-37*cos(1/2*d*x+1/2*c)^2+3)/a^3/(-2*sin(1/2*d*x+1/2*c)^4 
+sin(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)^5/sin(1/2*d*x+1/2*c)/(2*co 
s(1/2*d*x+1/2*c)^2-1)^(1/2)/d
 
3.4.37.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.11 (sec) , antiderivative size = 353, normalized size of antiderivative = 1.81 \[ \int \frac {1}{(a+a \cos (c+d x))^3 \sec ^{\frac {7}{2}}(c+d x)} \, dx=-\frac {65 \, {\left (-i \, \sqrt {2} \cos \left (d x + c\right )^{3} - 3 i \, \sqrt {2} \cos \left (d x + c\right )^{2} - 3 i \, \sqrt {2} \cos \left (d x + c\right ) - i \, \sqrt {2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 65 \, {\left (i \, \sqrt {2} \cos \left (d x + c\right )^{3} + 3 i \, \sqrt {2} \cos \left (d x + c\right )^{2} + 3 i \, \sqrt {2} \cos \left (d x + c\right ) + i \, \sqrt {2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 147 \, {\left (-i \, \sqrt {2} \cos \left (d x + c\right )^{3} - 3 i \, \sqrt {2} \cos \left (d x + c\right )^{2} - 3 i \, \sqrt {2} \cos \left (d x + c\right ) - i \, \sqrt {2}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 147 \, {\left (i \, \sqrt {2} \cos \left (d x + c\right )^{3} + 3 i \, \sqrt {2} \cos \left (d x + c\right )^{2} + 3 i \, \sqrt {2} \cos \left (d x + c\right ) + i \, \sqrt {2}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + \frac {2 \, {\left (87 \, \cos \left (d x + c\right )^{3} + 146 \, \cos \left (d x + c\right )^{2} + 65 \, \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{60 \, {\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}} \]

input
integrate(1/(a+a*cos(d*x+c))^3/sec(d*x+c)^(7/2),x, algorithm="fricas")
 
output
-1/60*(65*(-I*sqrt(2)*cos(d*x + c)^3 - 3*I*sqrt(2)*cos(d*x + c)^2 - 3*I*sq 
rt(2)*cos(d*x + c) - I*sqrt(2))*weierstrassPInverse(-4, 0, cos(d*x + c) + 
I*sin(d*x + c)) + 65*(I*sqrt(2)*cos(d*x + c)^3 + 3*I*sqrt(2)*cos(d*x + c)^ 
2 + 3*I*sqrt(2)*cos(d*x + c) + I*sqrt(2))*weierstrassPInverse(-4, 0, cos(d 
*x + c) - I*sin(d*x + c)) + 147*(-I*sqrt(2)*cos(d*x + c)^3 - 3*I*sqrt(2)*c 
os(d*x + c)^2 - 3*I*sqrt(2)*cos(d*x + c) - I*sqrt(2))*weierstrassZeta(-4, 
0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) + 147*(I*sqr 
t(2)*cos(d*x + c)^3 + 3*I*sqrt(2)*cos(d*x + c)^2 + 3*I*sqrt(2)*cos(d*x + c 
) + I*sqrt(2))*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + 
 c) - I*sin(d*x + c))) + 2*(87*cos(d*x + c)^3 + 146*cos(d*x + c)^2 + 65*co 
s(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/(a^3*d*cos(d*x + c)^3 + 3*a^3 
*d*cos(d*x + c)^2 + 3*a^3*d*cos(d*x + c) + a^3*d)
 
3.4.37.6 Sympy [F(-1)]

Timed out. \[ \int \frac {1}{(a+a \cos (c+d x))^3 \sec ^{\frac {7}{2}}(c+d x)} \, dx=\text {Timed out} \]

input
integrate(1/(a+a*cos(d*x+c))**3/sec(d*x+c)**(7/2),x)
 
output
Timed out
 
3.4.37.7 Maxima [F]

\[ \int \frac {1}{(a+a \cos (c+d x))^3 \sec ^{\frac {7}{2}}(c+d x)} \, dx=\int { \frac {1}{{\left (a \cos \left (d x + c\right ) + a\right )}^{3} \sec \left (d x + c\right )^{\frac {7}{2}}} \,d x } \]

input
integrate(1/(a+a*cos(d*x+c))^3/sec(d*x+c)^(7/2),x, algorithm="maxima")
 
output
integrate(1/((a*cos(d*x + c) + a)^3*sec(d*x + c)^(7/2)), x)
 
3.4.37.8 Giac [F]

\[ \int \frac {1}{(a+a \cos (c+d x))^3 \sec ^{\frac {7}{2}}(c+d x)} \, dx=\int { \frac {1}{{\left (a \cos \left (d x + c\right ) + a\right )}^{3} \sec \left (d x + c\right )^{\frac {7}{2}}} \,d x } \]

input
integrate(1/(a+a*cos(d*x+c))^3/sec(d*x+c)^(7/2),x, algorithm="giac")
 
output
integrate(1/((a*cos(d*x + c) + a)^3*sec(d*x + c)^(7/2)), x)
 
3.4.37.9 Mupad [F(-1)]

Timed out. \[ \int \frac {1}{(a+a \cos (c+d x))^3 \sec ^{\frac {7}{2}}(c+d x)} \, dx=\int \frac {1}{{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{7/2}\,{\left (a+a\,\cos \left (c+d\,x\right )\right )}^3} \,d x \]

input
int(1/((1/cos(c + d*x))^(7/2)*(a + a*cos(c + d*x))^3),x)
 
output
int(1/((1/cos(c + d*x))^(7/2)*(a + a*cos(c + d*x))^3), x)